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Integrated modeling, identification, analysis, and design.

The use of mathematical models to design large systems involves various instances and
possibly iterations of modeling, identification, system design and controller synthesis, and
various forms of analysis and simulation. Critical to this endeavor is the mathematical
machinery to systematically address as many stages of this process as possible. Automating
this process is the focus of the development of theory for virtual engineering (VE).

The various VE activities are currently performed using a variety of mathematical ma-
chinery, but we have recently developed an extremely promising unified framework for these
various aspects of system design. In addition to providing an “interface” between system ID
and control, it has the potential to overcome the major deficiencies in conventional system
identification: the difficulty of using a priori information and rich uncertainty descriptions
and still obtain global solutions for parameter estimates. This framework also allows ad-
vances in different directions to combine readily. For example, it is clear how to combine
progress in linear system ID with progress in nonlinear robustness analysis to produce non-
lincar system ID methods, a major need in VE. Our framework also clarifies many of the
computational issues and what basic algorithms must be developed.

In addition to this unification of the system ID and control process, many new tools are
developed to address a richer class of robustness analysis questions. Traditional robustness
questions addressed in the structured singular value, p, framework have addressed worst case
formulations. The same tools can be used to perform probabilistic robustness analysis but
in general the computation is intractable and we have developed new tools which may be
useful in reducing the computational growth. These new tools are for the worst-case analysis
of more exotic descriptions of uncertain models. We have extended the p-framework for
analyzing certain robustness properties of various classes of nonlinear systems. These tools
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are particularly useful for the analysis of real engineering systems which operate in various
regimes or along particular trajectories. The u approach to robustness analysis blends nicely
with H., specifications of performance requirement, but of more engineering interest is the
H, specifications of performance. We have made great strides in the analysis of the robust
#, problem both from a theoretical and practical viewpoint.

For complex systems it is not tractable to use the highest fidelity models to investigate
system level performance, there is too much computation associated with detailed behavior
when the dynamics of interest are macroscopic. Further in the process of control design,
complex models lead to unnecessarily complex controllers and are a waste of the computa-
tional power available and from experience these complex controllers tend to be less robust
in practice. We have developed a systematic method for the reduction of uncertain models to
distill out the important macroscopic behavior of the system and to cover the approximations
of the new model by an uncertainty description.

In the process of optimal control design, it is necessary to specify a performance re-
quirement. We have generalized the . synthesis solution to address a broader class of
performance specifications. Including robust H, and square Ho.. W e have extended these
tools for control design for LTI systems to linear time-periodic systems. We have also inves-
tigated various nonlinear control design methodologies to understand why they work so well
in practice given enough tweaking of the problem formulation and how some methodologies
can be blended to produce a continuum of control strategies as one method is traded off with
another.

Robustness analysis computation.

At the heart of our unified framework is the robustness analysis of uncertain systems. In
the last several years, a much clearer picture of the computational implications of various
uncertainty assumptions has emerged. While a detailed description is not possible here, one
important observation is that robustness analysis with real parametric uncertainty is NP
hard, generally viewed as implying worst-case intractability. Except for special cases, the
more general methods of identification and implicit analysis are also NP hard. Conventional
numerical analysis notions of guaranteed algorithm convergence are irrelevant in these prob-
lems, because global convergence is computationally prohibitive and local convergence is of
little value. Thus the only reasonable strategy is to aim for algorithms which exhibit exper-
imentally good performance on problems of engineering interest, and here our success with
extensive numerical experience in robustness analysis is very encouraging. A unified frame-
work allows for experience gained in algorithms for one particular problem to be transferred
to the more general class.

Thus, to obtain acceptable computation, we do not attempt to solve the various hard
problems exactly but rather to obtain good bounds, and aim for acceptable growth rates
on problems of engineering interest, rather than for all problems that are mathematically
possible. Upper bounds are usually convex feasibility problems, which have tractable compu-
tation. We have demonstrated that branch-and-bound can be successfully used to overcome
the intractability of mixed u, and developed power algorithms for the lower bounds which



are much faster and produce better bounds than conventional local optimization [34, 35, 36).
Several new approaches to computing an improved p lower bound have been presented
in [24]. These algorithms have been combined to yield a substantially improved power
algorithm. The nature of the mixed p problem is such that the only meaningful way to
evaluate an algorithm is by testing it on a large number of representative problems. We
compared proposed algorithms, each run on the same type of problems, and showed how the
performance of the best algorithm depends on problem size. -

For branch and bound to be effective, it is essential that the bounds get reasonably close
without extensive subdivision, because just splitting each real parameter once would still
yield 2 subdomains. Thus pruning must eliminate most branches, essentially preventing the
tree from getting too broad. The evidence so far, gathered on many thousands of examples
chosen to be representative suggests that branch and bound can be used to get the worst-
case bounds ratio as good as the average bound ratio with modest additional computational
cost. For this scheme to work, it is essential that the bounds have a good average ratio. As
we extend explicit uncertainty modeling to new domains, this will remain a critical research
problem. ,

When the branch and bound method is applied to the worst-case computation, only
axially aligned cuts were performed. Although more intelligent branching schemes can be
explored, the computational experience is it’s not as critical as improving the original quality
of the bounds. The need for performing non-axial cuts arose in the probabilistic robustness
analvsis, which aims at providing hard bounds on the probability distribution of a system’s
performance assuming the distribution of the uncertainty is given, which is a complement. to
the “soft” bounds provided by traditional statistical methods, such as Monte Carlo simula-
tion and importance sampling. Our another goal is using branch and bound to tremendously
increase the effective number of trials in the Monte-Carlo simulation to achieve high confi-
dence levels when assessing rare events.

Probabilistic robustness analysis is computationally more challenging than the worst case
analysis. Our experience is simple application of the branch and bound schemes with axial
cuts didn’t break the intractability of the problems. ([37],[18]) And in this case, better qual-
ity of the bounds doesn’t help much. The intuition is that exponential growth in the number
of branches is inevitable if the branching is not appropriately aligned with the boundary of
singularity. For the rank-one problems the boundary is linear in the uncertain parameters,
therefore a linear cut along the boundary will be much more effective to exclude benign re-
gions than the cuts aligned with the axes. Numerical experiments also showed that general
random matrices behave like rank-one matrices near the worst-case. This observation moti-
vated us to investigate the computation of p with richer classes of uncertainty descriptions.

Spherical g deals with the uncertainty set described by a spherical constraint rather
than the standard co-norm constraint. In [19], an upper bound to spherical p with only
nonrepeated complex scalars can be computed by solving an LMI analogous to the one .
in the standard p case. The main difference between the standard and spherical upper
bounds is that they involve different quadratic forms in the signal space description. This
results in a slightly different optimization problem associated with the upper bound. A
closed form expression for the solution optimization problem can be derived [27]. The upper
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bound optimization problem is further generalized to uncertainty with ellipsoidal constraints,
repeated scalars, real parameters, and full blocks.

Linear constraints can be viewed as the extreme of the ellipsoidal constramts when the
eccentricity goes to infinity. An upper bound to p with linear cuts is computed using a com-
bination of the ellipsoidal constraint and the standard co-norm constraint. Another way to
handle linear constraints is to use implicit method. An implicit system with higher dimension
can be constructed to incorporate the linear term into the constraints on the parameter set,
then an upper bound can be obtained by solving the LMI for the corresponding implicit x
upper bound. Numerical experiments compared these two methods with another one called
the parallelogram method and the result is that the implicit method gives best bounds for
most problems, [38]. Future research involves applying this method to the probabilistic
framework to access the probability of rare events. For higher dimensional problems multi-
ple linear cuts will be necessary, therefore the computational issues involved in implementing
multiple linear constraints by the implicit method need to be studied.

A single p robustness performance analysis provides a bound £ on the uncertainty under
which stability as well as H, performance level % are guaranteed. While this approach does
provide a stability and performance margin, a good estimate of the actual uncertainty bound

“may be available. In that case, assuming that the uncertainty bound has been normalized,
a question of interest is whether the system is stable, whenever the uncertainty has size less
than 1, and if that is the case, what is the worst case performance for this same uncertainty
size.

In [13] we considered a class of uncertain systems subject to a norm bounded structured
LTI perturbations. We showed that the worst case Ho, gain of a system can be written
exactly in terms of the skewed structured singular value. Although, like u, the skewed
structured singular value can not be computed exactly, we discussed efficient algorithm
to compute corresponding upper and lower bounds. The results presented show that the
enhanced algorithm developed recently for the structured singular value, can be extended to
the problem of computing worst case gains under fixed size uncertainty, without significant
loss of performance or accuracy.

~ In many cases, considering a slightly different version of previously described system
allows us to set additional robust performance questions in the p framework. For example,

the problem of computing the worst case H, norm of an uncertain system has always been
considered an important one, since many useful performance requirements are captured by
it. Manv recent publications have presented different approaches to solving this problem.

However, in all cases, the results developed provide only upper bounds on the given norm

when the uncertainty is linear time invariant.

In [31] we presented how the worst case Hy norm of an uncertain system subject to
norm bounded structured LTI perturbations can be written exactly in terms of the complex
skewed structured singular value. Even though computation of the lower and upper bound
for the worst case H, performance implies numerical integration over frequency, which is the
same as in a frequency by frequency evaluation of the structured singular value (the current
practice for robustness analysis in industry), this new approach can be effortlessly integrated
into the current robustness analysis tools.



Some extensions of the structured singular value (x) theory to more general uncertainty
descriptions have been developed [17]. In these descriptions, the allowable uncertainty set
A is characterized through generalized integral quadratic constraints (IQCs, [6, 22]).

Convex upper bounds are obtained, analogous to the standard LMI(linear matrix in-
equalities)  upper bounds. In some cases, these bounds can be computed very efficiently
(without solving the LMIs), since the optimal value can be shown to be equal to the spectral
radius of an associated linear operator [27].

These LMIs belong to a particular class, called cone-preserving linear matrix inequalities,
for which the corresponding theory has been developed. By using a generalized version of the
classical Perron-Frobenius theorem, the optimal value is shown to be equal to the spectral
radius of an associated linear operator. This allows for a much more efficient computation
of the optimal solution, using for instance power iteration-type algorithms. We are currently
investigating to what extent these convenient numerical properties can be exploited in the
‘important cases where only part of the LMI has the cone-invariance property.

In parallel with the theoretical work described above, a preliminary study on the suitabil-
ity of the current uncertainty analysis tools to nonlinear problems has been started. Designed
as a exploratory analysis from a computational viewpoint, the initial stages are primarily
aimed to determine the kind of system properties that can be determined from the knowledge
of uncertain models. In other words, what properties are robust under uncertainty, and how
can they can be computed. ‘

Analysis of implicit systems.

Implicit models play a key role in this unified framework. We have extended robustness
analysis techniques to systems described in implicit form, developing new tools for analysis
of systems under a combination of time-invariant/time-varying perturbations and exact con-
ditions for robust H, performance analysis. There is strong engineering motivation for this
extension, particularly for VE. In fact, the standard control theory I/O formulation is only
adequate for systems which are deliberately built to match the “signal flow” conception. It
appears awkward when modeling physical systems from first principles, where physical laws
such as mass, momentum, or energy balances or physical laws such as Newton’s second law,
Ohm'’s law, and so on are more naturally thought of as relations between variables than as
I1/0 maps. This is entirely compatible with the behavioral framework of Willems, and much
of our work recently has focused on integrating this framework with robust control.

The important uncertainty modeling machinery from robust control can not only be gen-
eralized appropriately to implicit systems, but also greatly extended to treat entirely new
problems. The implicit form analysis allows for over-constrained problems, such as those
involving an uncertain system and a finite number of integral quadratic constraints (IQCs),
which may be used to obtain richer signal characterizations. It also provides a framework for
the formulation of model validation/system identification questions. For systems with struc-
tured uncertainty involving a combination of linear time-invariant and linear time-varying
perturbations, an exact test for analysis was obtained, based on a finite augmentation of
the original problem. Conditions based on scaled small-gain are also available for this case,




and the class of perturbations for which these conditions become necessary has been char-
acterized. A necessary and sufficient condition was obtained for worst-case Hp-performance
analysis under structured uncertainty. This test is a convex feasibility condition across fre-
quency, of the same nature and computational complexity as the corresponding conditions
for H,, performance. The proof is based on a deterministic characterization of white noise
signals, and the necessity proofs involve an extended “S-procedure losslessness” result on

quadratic functions on Ls.

Component Synthesis.

Just as it is natural to adopt implicit models in the analysis of complex systems, large
gains may be obtained by developing synthesis methods which may be applied to systems
without signal flow graphs. A system is viewed as a family of allowable trajectories, and the
design objective becomes the synthesis of a component which when interconnected with the
given system, further restricts the allowable trajectories such that pre-specified performance
objectives are satisfied. Thus the component to be designed is itself a system, with no pre-
specified signal flow graphs. In [4], the H, framework was extended to encompass these
more general types of optimization problems in the absence of uncertainty.

Extensions of this approach to general systems described in implicit form will have a
substantial impact on VET, since parts of the design process may be automated. The various
technical hurdles present in the analysis of implicit systems are inherited by the synthesis
problem. In fact, the synthesis problem is typically much harder, and various techniques will
have to be developed in order to construct tractable algorithms.

Model validation/ID. -

The extension’ of our analysis algorithms to the implicit formulation is currently being pur-
sued, as are issues arising from the incorporation of data, both of which are necessary for
solving ID/model validation problems. Although results with a preliminary algorithm are
very encouraging, development is needed to further improve the convergence properties as
was done for the standard case. An LMI upper-bound has recently been coded in matlab
using the LMI-Lab toolbox. Application of these bounds to computation for experimental
control problems at Caltech has recently begun. This work should help lead to an identifi-
cation methodology appropriate for robust control [25, 23]. Additional research at Caltech
has focused on developing an approach for time-domain model validation of an uncertain,
noisy continuous-time model with a discrete and finite data record; which is the most di-
rectly relevant type of model validation for control as well as VE. Validation conditions in
the presence of both LTI and LTV uncertainty have been derived which are convex and can
be evaluated by LMI methods, have coded optimization software to implement it, and have
successfully applied the method to several laboratory experiments [8, 9, 10, 29].




Abstract data type.

Linear Fractional Transformations (LFTs) have proven to be useful in generalizing standard
linear state space systems to include uncertainty (see [2] and the references therein). The
engineering motivation for this work is based on the desire to have a standard framework
for modeling uncertain systems that gives the benefits of state space descriptions, both for
computational and theoretical convenience. In building hierarchical system models from
components, the goal is to have convenient basic building blocks, with models of resistors,
capacitors, masses, springs, ducts, valves, etc., and an abstract data type for their represen-
tation which naturally and explicitly includes an uncertainty representation.

We want to make the weakest possible assumptions about uncertainty in our data type,
which can be strengthened in the analysis stage to allow a wide variety of uncertainty assump-
tions. Thus the framework we have adopted is the LFT on noncommuting indeterminants
or operators. Given this framework, the major results in linear systems theory have be gen-
eralized over the last several years. Stability and L, gain can be characterized in terms of
generalized Lyapunov inequalities, called linear matrix inequalities (LMIs), exactly as in the
standard case. For realization theory, minimality can be characterized in terms of controlla-
bility and observability, all minimal realizations are related by similarity, and for nonminimal
realizations there is a direct generalization of the Kalman decomposition. Balanced trunca-
tion model reduction has guaranteed error bounds, exactly as in the 1D case. For synthesis,
output feedback stabilization can be reduced via a separation argument to full information
and full control problems, which can be solved using LMIs. Finally, H,, optimal control can
be generalized to this setting, again with a separation structure and 2 LMIs with a convex
coupling condition. All of these results are reviewed in [2].

The natural construction of the hierarchy for a system of models is inherently tree struc-
tured. The tree structure defines a partial ordering of the models. Taking the natural
reductionist approach, one has high level models. If these models are inadequate then the
model must be refined into its components. This results in a reticulated model for a compo-
nent, where the component model has two modes. The first mode is as a leaf of the hierarchy
tree. For this mode, the model of the component contains parameters, dynamics, and uncer-
tainty and is represented by an LFT system. The second mode is the reticulation, where the
model of the component is a node of the hierarchy tree and describes the interconnection of
subcomponents. Again, the model is represented by an LEF'T system but it no longer contains
parameters, dynamics, and uncertainty. This information is contained in the subcomponents
for which it defines the connection. :

This sort of model construction may be useful for particular problems but it has it’s
flaws. Although this construction may seem completely general, but an implicit assumption
is made in the construction that limits the possible hierarchies of models. The restrictive
assumption is that the more accurate (reticulated) models for a component connect with
the outside world using the same interconnection variables. Although this seems like a
plausible restriction, it is problematic in dealing with continuum phenomenon and boundary
conditions. As an example, a high level model for an electronic circuit would be represented
by circuit equations, but at the lowest level it is necessary to solve Maxwell’s equations to



more accurately describe the dynamics of the system. This would lead to more complex
interaction between other circuits to which it is connected or in near proximity.

The implication is that there are limits to the theoretical statements which can be made
about this sort of structure and that it will be necessary to employ engineering judgment
and approximation to implement this sort of hierarchical models.

Model reduction.

Model based control methods are commonly used in the design of large, complex systems.
For the purposes of feedback control highly accurate models are desired. However, such
accuracy often requires that complicated high-order models be used, which in turn lead
to more difficult control design problems from both an engineering and a computational
perspective. A fundamental limitation in achieving desired system performance via any
control design process is the inherent uncertainty in modeling the dynamics of the system
under consideration. In [1], model reduction methods and realization theory for uncertain
systems are developed, which are aimed at facilitating subsequent control design and analysis.
The uncertain systems are represented by a Linear Fractional Transformation (LFT) on a
block diagonal uncertainty structure. A complete generalization of balanced realizations,
balanced gramians and balanced truncation model reduction with guaranteed error bounds
is given, which is based on computing solutions to a pair of Linear Matrix Inequalities (LMIs).
A necessary and sufficient condition for exact reducibility of uncertain systems, the converse
of minimality, is also derived. This condition further generalizes the role of controllability
and observability gramians, and is expressed in terms of singular solutions to the same LMIs.
The reduction methods provide a systematic means for both uncertainty simplification and
state order reduction in the case of uncertain systems, but also may be interpreted as state
order reduction for multi-dimensional systems.

Generalized [, Synthesis.

In the standard H., paradigm, the allowable disturbance class consists of arbitrary unit I,
norm signals, while the design objective is to ensure that all ‘output errors have l; norm
less than one. The Ho design which is robust to plant uncertainty and insensitive to plant
parameters can be performed in a systematic and rigorous fashion. As the physical inter-
pretation of H., optimization is the minimization of a system’s power to power gain, it is
implicitly assumed in the design process that the worst case disturbance is allowed to be
an arbitrary power signal, such as a sinusoid. This is clearly not a proper choice for many
types of physical disturbances, such as sensor or thermal noise, wind gusts, and impulsive
forces. In [6], the development of the extension of the H, optimization for LTI systems to
allow for more general closed-loop design objectives is presented. From a practical point of
view, various open problems can be solved using the generalized framework. From a purely
theoretical standpoint, these results extend the boundary for which optimization in the I,
framework results in computationally tractable solutions.



Under the new framework, the allowable disturbance class and the design objectives are
generalized to encompass a wider class of optimization problems. The underlying signal
space is still taken to be l5; as opposed to the standard Ho synthesis, however, the allowable
disturbance set and performance objective are general functions of the various inner products
of the input and output variables. The constraints used to define the allowable disturbance
set are very closely related to IQC’s. An analysis condition is derived, which takes the form of
an operator inequality. Under this condition, a method for constructing controllers that meet
the performance objectives is presented, which takes the form of an affine matrix inequality
(AMI). Various problems are solved using the generalized [, synthesis formulation: synthesis
for independently norm bounded disturbances, robust stability with “element by element”
bounded structural uncertainty, and certain classes of robust performance problems. In
addition, recent results on the design of gain scheduled controllers are extended to the above
cases. '

The generalized I, synthesis is also extended to allow deterministic noise disturbances.
One common problem of H,, controllers is that they tend to be sluggish and overly con-
servative. The reason is that M, design minimizes the energy to energy gain; in many
applications, modeling the disturbances as arbitrary signals is a poor choice. In contrast,
the H, design which minimizes the power output when the disturbances are assumed to
be white noise and impulses often leads to a less conservative performance. The potential -
problem with H, designs is that they lack robustness properties. A desirable control de-
sign strategy would then be one which has the I/O gain interpretation of the #, norm, but
can readily accommodate Ho, bounds on the uncertainty. With white noise signals being
captured in a deterministic setting [26], the generalized I, formulation is extended to solve
the so-called mixed Ho-Hoo problem and robust H, synthesis when the disturbances class
consists of a mix of I, bounded signals and deterministic noise signals. These linear matrix
inequality based solutions are non-conservative and computationally tractable. The solution
of the mixed Ho-Hoo problem can, in turn, be used as one of the two iterative steps for robust
H, svnthesis, truly putting robust H, synthesis on the same par as robust H synthesis in
terms of computational complexity.

Analysis and synthesis of time-varying systems.

Dr. Lall and outside collaborators have developed a new framework and techniques for
uncertainty analysis and control of nonlinear systems along trajectories. This approach has
focused on using linear time-varying (LTV) systems as representations of nonlinear systems
along prespecified trajectories. The major attraction of this approach is both analytical
and computational, because LTV systems are substantially simpler than general nonlinear
svstems, and the resulting approach is extremely suitable for simulation-based design and
analvsis.

For many nonlinear systems, it is desired to apply control to maintain system performance
along a specific trajectory, or set of trajectories, in state space. Along such trajectories the
behavior of a nonlinear system can be characterized as a linear time-varying system. LTV.
systems also arise in a more general nonlinear setting when analyzing system behavior and the




effects of uncertainty along a trajectory; this is a particularly useful approach because it can
combine the information generated by a high-fidelity nonlinear simulation with powerful and
computationally tractable analysis methods. Dr. Lall and collaborators [7] have developed
a new mathematical framework for the analysis of LTV systems. Using this framework,
such systems can essentially be treated as if they were time-invariant, with common notions
such as that of frequency being well-defined. This provides a direct method of derivation
of solution for analysis and synthesis problems for LTV systems. In particular, in [7], a
complete solution to the H-infinity problem is given for LTV systems.

Further, previous methods which were restricted to linear time-invariant systems have
been generalized to LTV systems using this framework. Dr. Lall et al [20] have derived
guaranteed error bounds for the model reduction of uncertain LTV systems. This provides
the first systematic way to reduce nonlinear uncertain systems along trajectories, and may
find wider application in nonlinear model reduction.

Another area of research which has received attention recently is a generalized class of
hybrid system known as jump systems. For these systems, Dr Lall et al [21] have developed
new techniques for analysis and synthesis, making use of the LTV framework of (7). In
particular this paper solves the outstanding problem of L, induced norm minimization for
asynchronous multi-rate sampled-data systems. Previously, only approximate solutions were
known to this problem and this paper provides the first solution to asynchronous problems
of this type. A further consequence is that the proofs specialize to give the simplest synthesis
proof known for standard sampled-data systems.

Robust control and nonlinear extensions.

So far, the most successful applications of robust control techniques have occurred in prob-
lem domains (flexible structures, flight control, distillation) where there may be substantial
uncertainty in the available models, and the degrees of freedom and the dimension of the
input, output, and state may be high, but the basic structure of the system is understood,
the uncertainty can be quantified. Nonlinearities are bounded and treated as perturbations
on a nominal linear model, or handled by gain-scheduling linear point designs.

The state of the art in industry, as discussed above, still consists in obtaining lower bounds
to the performance indices through extensive simulation or local optimization techniques.
However these methods require large amounts of computation; standard optimization tech-
niques fail even for small problems, and a search over parameter space exhibits exponential
growth with the number of parameters. The methods actually used in industry share two
main characteristics: performance specifications are made over a finite time horizon, and the
interface between the analysis method and the system is a simulation. '

In recent work at Caltech, we have begun to extend the robustness analysis techniques
of linear systems, and in particular the associated computational methods, to nonlinear
systems. Given the diversity of nonlinear behavior, it is clear that this cannot be done in
complete generality and still maintain the efficiency and usability of the methods. We have
focused on analysis methods for a specific nonlinear robust performance problem: tracking
a trajectory in the presence of noise and uncertainty. Many nonlinear analysis problems of
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engineering interest can be reduced to such a problem. A common example is an airplane
performing an automatic change of altitude and heading. The pilot enters the new heading
and altitude and the flight computer determines nominal commands to perform it. A second
control loop maintains the airplane around the planned trajectory. The designer has in mind
an appropriate path to be completed in a finite predetermined time, and designs the control
system accordingly. Since the real system is not exactly the one used for the design, and
since it is also subject to noise, the system will not follow the intended trajectory. The
question of interest becomes: will the real trajectory, under the worst conditions possible,
remain close enough to the nominal one in an appropriate norm?

In [30] we presented a power algorithm to compute a lower bound on the performance
index associated with the robust trajectory tracking problem (i.e., the distance from the
actual to the nominal trajectory). This algorithm is similar in nature to the one developed
for the structured singular value, and has similar behavior. Since, as was the case for
linear systems, the algorithm is not guaranteed to converge in general, its analysis is done
empirically. We test this algorithm by applying it to simulations of real systems and have
carried out several different performance tests on two different platforms: the Caltech ducted
fan experiment and a simplified model of an F-16 jet fighter. The results of these tests are
reported in [30]. These results indicate that without significant additional computation,
and avoiding computationally expensive parameter searches, a lower bound on the given
performance index can be computed that gives more information on the worst case behavior
of the system than the standard Monte Carlo procedures.

We have also begun to develop computable upper bounds for the trajectory generation
problem. One method is to use rational approximations to nonlinear systems [32]. At present,
these results are still far from being practical, but they are a starting point in developing
computational machinery for performing robust modeling of nonlinear systems. This effort
will be a major focus of our VET research, and will leverage ongoing research in nonlin-
~ear controls. What will be particularly important for VE is to develop methods that deal
with uncertainty and nonlinearity in hierarchical, multiresolution models of heterogeneous
svstems. '

In [12] we proposed a numerical algorithm for analysis of disturbance rejection for non-
lincar svstems. The algorithm seeks solutions to Euler-Lagrange equations and is similar to
power algorithms for p analysis lower bound. Indeed, for linear systems we demonstrated
how the newly developed algorithm reduces to a well studied algorithm for the lower bound
of 11, and the algorithm is guaranteed to converge to the global optimum. '

We evaluated the algorithm accuracy via converse Hamilton-Jacobi-Bellman (HJB) method
which can generate the worst case disturbance for the optimal controller, but there may be
even worse disturbances for non optimal controllers. The worst case disturbances obtained by
our proposed power algorithm are very close to the worst case disturbances a priori given by
other methods. For the general case of a system with a non-optimal controller this algorithm
can provide us with knowledge of the worst case disturbance.

Robustness for nonlinear systems was proved to be equivalent to the existence of solution
to Hamilton-Jacobi equations or nonlinear matrix inequalities. However, computational
methods to establish the existence of these solutions have not been developed to a level
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comparable to their linear counterpart (i.e., existence of solutions of Riccati equations and
linear matrix inequalities), and are theoretically intractable, even for the cases which are easy
for linear systems. In practice, designers have to resort to the approximation techniques.
The frozen Riccati method (FRE) [3] that previously rested on shaky theoretical grounds
was one of them. This technique has recently gained popularity among some of the control
~ engineers due to its computational simplicity when compared to other techniques. Frozen
Riccati techniques are so named because they rely on a state-dependent linear representation
of input-affine nonlinear systems, which are used to reduce the Hamilton-Jacobi equation to
a state dependent Riccati equation which can be solved on-line in a pointwise (or “frozen”)
fashion. Surprisingly, even though no substantial results existed to guarantee even mere
stability, in practice it seemed to perform unjustifiably well. Our investigation turned up
new results [15, 14], leading to at least some explanation of the promising results obtained
in practice. While the state dependent linear representation of the nonlinear system is not
unique, it was proven that under mild assumptions, there always exists a representation
that will recover the optimal controller. Unfortunately, it was also shown that finding the
proper representation is just as difficult as solving the Hamilton-Jacobi partial differential
equation. Even though we have examples demonstrating that frozen Riccati techniques can
produce instability, its unexpectedly good performance on many systems remains somewhat
of a mystery, and deserves further examination.

While the FRE is a primitive method that uses linear techniques to tackle nonlinear
systems, the problems associated with it also arise in other more sophisticated techniques,
such as the linear parameter varying (LPV) scheme ([33]). As was revealed in our research, a
close connection exists between the FRE and LPV methods. Both can be understood as the
search for a Lyapunov or storage function without gridding the entire state space, however
the LPV design guarantees stability at a price of heavier computation. In addition, the LPV
method reduces to the FRE when the rate variation of the parameters is set zero. Recognizing
that a critical element in both schemes is the choice of linear state dependent representation
of the nonlinear system, techniques are currently being developed that incorporate this design
freedom into the control selection process in an optimal fashion.

Neither of the above two techniques, FRE or LPV, exploits on-line computation. This is
in contrast to a technique known as Model Predictive Control (MPC) which relies completely
on on-line optimizations. Unfortunately, MPC takes an extreme point of view, and fails
to benefit from information obtained off-line from LPV or FRE analysis. Furthermore,
it is generally lacking any guarantee of stability, without imposing stringent or unnatural
constraints. Qur research revealed that off-line analysis from other techniques could aid on-
line computation and solve many of these difficulties [28]. In fact, when viewed in the correct
framework, most control laws obtained from off-line analysis can be viewed as limiting cases of
on-line MPC schemes. Or said differently, off-line approaches, such as LPV, naturally admit
an on-line extension to an MPC scheme. A unifying concept underlying these results is that of
a Control Lyapunov Function (CLF), which is the generalization of a Lyapunov function to a
control system [11]. All stabilizing schemes produce a CLF, and the information contained in
this function essentially summarizes all the knowledge obtained through the design process.
When a CLF is incorporated into an MPC scheme, it provides a guarantee of stability while
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focusing the computations. Furthermore, the schemes that we have developed that combine
CLFs and MPC are more implementable and flexible than traditional MPC approaches,
since they do not require global optimum to non-convex optimizations, but rather use on-line
computation to improve solutions as much as possible given the imposed time limitations.
This provides a promising future paradigm for a unified approach to nonlinear optimal
control.
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